Multi Level Tools Influential cases in multi level modeling

Katja Möhring & Alexander Schmidt

GK SOCLIFE, Universität zu Köln

Presentation at the German Stata User Meeting in Berlin, 1 June 2012

Multi level tools - overview

- mltl2scatter: Scatter plots at upper levels
- mlt2stage: Calculates and stores values for two-stage regression and graphs.
- mltcooksd: Estimates the influence measures Cook's D and DFBETAs for the second level units in hierarchical mixed models.
- mltshowm: Postestimation command for mltcooksd, shows the models which caused Cook's D to be above the cuttoff point.
- mltrsq: Gives the Boskers/Snijders and the Bryk/Raudenbusch R-squared values for each level.

Multi level tools - overview

- mltl2scatter: Scatter plots at upper levels
- mlt2stage: Calculates and stores values for two-stage regression and graphs.
- mltcooksd: Estimates the influence measures Cook's D and DFBETAs for the second level units in hierarchical mixed models.
- mltshowm: Postestimation command for mltcooksd, shows the models which caused Cook's D to be above the cuttoff point.
- mltrsq: Gives the Boskers/Snijders and the Bryk/Raudenbusch R-squared values for each level.

mltcooksd

Index

- Introduction
- 2 A research example from ASR
- 3 mltcooksd
- 4 mlt2stage
- Outlook

- Introduction
- 2 A research example from ASR
- mltcooksd
- 4 mlt2stage
- Outlook

Influential cases in multi level modeling

 Multi level or hierarchical modeling originates from educational research, here typically pupils (level 1) nested in classes (level 2) are analyzed

mltcooksd

- Increasingly used in social sciences to compare individuals nested in countries with data of international surveys
 - 1 Small number of upper level units
 - 2 No random sample at upper level
- → Problems of influential outliers concerning the direct impact of macro variables as well as their indirect "moderator" effect

mltcooksd

• Introduction

- 2 A research example from ASR A research example from the American Sociological Review Cook's D and DEBETAS
- mltcooksd
- 4 mlt2stage
- Outlook

Why should we consider outliers? A research example

Ruiter and De Graaf (2006): National Context, Religiosity, and Volunteering: Results from 53 Countries. American Sociological Review.

- Analysis of World Values Survey data with 53 countries
- Dependent variable volunteering
- Independent variable national religious context
- Conclusion: Average church attendance is significantly and positively related to volunteering

A research example from the American Sociological Review

Introduction

Van der Meer, Grotenhuis and Pelzer (2010) replicated their results

Notes: Data from von der Meer et. al. (2010) - own calculations.

Figure: Volunteering and Church Attendance

and showed ...

Introduction

Notes: Data from von der Meer et. al. (2010) - own calculations.

Figure: Volunteering and Church Attendance - Revisited

...that African countries build exceptional and influential cases

mltcooksd

Notes: Data from von der Meer et. al. (2010) - own calculations.

Figure: Volunteering and Church Attendance - Revisited I

Cook's D and DFBETAs: diagnostics for influential cases

mltcooksd

Cook's D

- Measures the influence of one single (level-two) unit on all model parameters or a subset of parameters
- After non-hierarchical linear regressions it can be estimated from the hat matrix. Not possible after hierarchical mixed models
- However, we can estimate Cook's D empirically (Snijders and Berkhof 2008: 157ff.)

DFBETAs

- Measures the influence of one single level-two unit on a single parameter
- · Again, we can only estimate this statistic empirically

DFBETAs

Introduction

DFBETAS can be interpreted as the standardized difference in the estimated slope with and without unit j.

DFBETAS_{jZ} =
$$\frac{\hat{\beta}_{Z} - \hat{\beta}_{(-j)Z}}{se(\hat{\beta}_{(-j)Z})}$$

, where $\hat{\beta}_Z - \hat{\beta}_{(-j)Z}$ is the difference between the estimated slopes of predictor Z. $\hat{\beta}_Z$ is the estimate in the full sample and $\hat{\beta}_{(-j)Z}$ is the estimated slope when unit j is excluded.

Fixed part of the model:

$$\underline{C}_{j}^{F} = \frac{1}{r} (\underline{\hat{\beta}} - \underline{\hat{\beta}}_{(-j)})' \underline{\hat{S}}_{F(-j)}^{-1} (\underline{\hat{\beta}} - \underline{\hat{\beta}}_{(-j)})$$

, with r =number of fixed parameters. $\hat{\underline{S}}_{F(-j)}$ is the variance-covariance matrix after unit j has been excluded.

Random part of the model:

$$\underline{C}_{j}^{R} = \frac{1}{p} (\underline{\hat{\eta}} - \underline{\hat{\eta}}_{(-j)})' \underline{\hat{S}}_{R(-j)}^{-1} (\underline{\hat{\eta}} - \underline{\hat{\eta}}_{(-j)})$$

, with p =number of random parameters.

Overall:

$$\underline{C}_{j} = \frac{1}{r+p} (r\underline{C}_{j}^{F} + p\underline{C}_{j}^{R})$$

- 2 A research example from ASR A research example from the American Sociological Review Cook's D and DEBETAS
- 3 mltcooksd mltcooksd description Stata
- mlt2stage mlt2stage description Stata
- Outlook

the mltcooksd ado

The mltcooksd command

- Calculates Cook's D after hierarchical mixed models (xtmixed and xtmelogit)
 - for the fixed part (C_i^F)
 - for the random part (C_i^R)
 - for the whole model $(\vec{C_i})$
- Gives DFBETAs for each fixed parameter in the model
- Compares the estimated values of Cook's D and DFBETAs to cutoff values proposed by Belsley et. al (1980) and reports those cases that have been detected as influential

mltcooksd

00000000

Introduction

mltcooksd syntax

Syntax

mltcooksd [, show estimates of C_i^F fixed show estimates of C_i^R random keep estimates in the data set keepvar(prefix) estimate and show computing time counter graph show DFBETAs in box plot suppress labels in the output slabell

Introduction

the mltcooksd ado - an example

Mixed-effects Group variabl	ML regression e: Country	ı			of obs of groups		21498 22
				Obs per		avg =	441 977.2 2345
	d = -28233.225	5		Prob >	i2(4) chi2	=	948.65 0.0000
gr_incdiff	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
sex age respincperc socspend _cons	0329264 .0031901 0605727 .0076906 3.086072	.0128818 .000379 .002245 .0121715 .2506038	-2.56 8.42 -26.98 0.63 12.31	0.011 0.000 0.000 0.527 0.000	05817 .00244 06497 01616	742 472 728 651 897	0076786 .003933 0561726 .0315463 3.577246
	cts Parameters						
Country: Iden	tity var(_cons	 s) .0809	9317 .02	46771	.04452	222	.1471162
	var(Residual inear regressi						

Introduction

the mltcooksd ado - an example

```
mltcooksd, fixed random graph
Level 2 variable is Country
```

Calculating DFBETAs for the parameters of sex age respincperc socspend _cons

Cutoff value for DFBETAs is 0.4264 Cutoff value for Cook's D is 0.1818

Level-two units with Cook's D above the cut off value:

	L2ID	CooksD_f	CooksD_r	CooksD
 	Portugal Australia	.6616195	3.098742 3.848549	1.35794
 United States of	Chile of America	.6308343 .1445634	2.56214 1.989775	1.182636
Czecl	n Republic	.1419795	.3855572	.2115731
Republio	of Korea Hungary	.2438738 .0475411	.0923624 .5732102	.2005848 .1977323

Introduction

the mltcooksd ado - an example

Level-two units with DFBETAs above cut off value:

+						
	L2ID	DFB_sex	DFB_age	DFB_re~c	DFB_so~d	DFB_cons
	Portugal	0.0335	-0.9608	1.3871	0.1956	-0.1090
1	Australia	0.0871	-0.5155	-0.7639	0.1678	-0.1420
Ĺ	Chile	-0.0699	-0.5185	1.3678	-0.7983	0.8374
Uı	nited States of America	0.2718	-0.5825	-0.4614	0.2827	-0.2996
Ĺ	Spain	-0.0439	-1.0599	1.3739	0.0566	0.0000
1	New Zealand	-0.0606	-0.2903	-0.9856	0.0943	-0.1344
1	Netherlands	0.2113	0.8566	-1.0978	-0.0106	-0.0187
1	Japan	0.2648	0.3343	0.5692	0.0468	-0.1422
1	France	0.0492	0.9389	-0.2171	0.0426	-0.0908
1	Sweden	-0.1991	0.5152	-0.9410	-0.2625	0.2324
1	Norway	-0.8209	0.5698	-0.4893	-0.0012	0.0144
1	Canada	0.4149	0.1610	-0.8004	0.0782	-0.0931
1	Czech Republic	0.1199	0.7360	0.1394	0.0545	-0.2036
1	Republic of Korea	0.0035	-0.5778	0.7074	-0.5044	0.5339
1	Finland	-0.5870	0.3408	-0.3167	0.0270	-0.0152
+						

Introduction

the mltcooksd ado - an example

Notes: Data from the ISSP - output of the mltcooksd graph option.

Figure: Distribution of DFBETAS

Introduction

What's wrong with Chile and Korea?

Notes: Data from the ISSP - plot produced with mltl2scatter.

Figure: Social Spending and Support for Redistribution

Introduction Stata

the mltcooksd ado - an example

Chile and Korea excluded:

Mixed-effects M		n			of obs		
Group variable:	Country			Number	of groups	=	20
				Obs per	group: mi	n =	441
					av	g =	971.6
					ma	x =	2345
				Wald ch	i2(4)	=	984.00
Log likelihood	= -25784.384	4		Prob >	chi2	=	0.0000
gr_incdiff	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
+-							
sex	0321106	.0137022	-2.34	0.019	058966	3	0052548
age	.0036384	.0004015	9.06	0.000	.002851	5	.0044254
respincperc	0656586	.0024008	-27.35	0.000	07036	4	0609531
socspend	.0356661	.0150762	2.37	0.018	.006117	3	.0652149
_cons	2.468119	.3224328	7.65	0.000	1.83616	2	3.100076

^{*} Random part omitted

Introduction

the mltcooksd ado - an example

Notes: Data from the ISSP - plot produced with mltl2scatter.

Figure: Social Spending and Support for Redistribution

Introduction

2 A research example from ASR A research example from the American Sociological Review

mltcooksd

- mltcooksd
- 4 mlt2stage mlt2stage description Stata
- Outlook

The two-stage approach

- Two-stage approach to model cross-level interactions in multi level data (Achen 2005; Gelman 2005)
- Coefficients from single country regressions are used for macro level estimations, e.g. two-stage regression

First-stage regression specification is:

$$y_j = X_j \beta_j + u_j \ (j = 1, ..., m)$$
 (1)

Second-stage regression specification is:

$$\beta^1 = z\gamma + \nu \tag{2}$$

 Two-stage graphs to examine the moderator effect of a macro variable and detect potentially influential cases

the mlt2stage ado

The mlt2stage command

- Calculates and stores the coefficients of country separate linear and logistic regressions
- Plots the estimated values against a macro level indicator

Introduction Stata

mlt2stage syntax

Syntax

mlt2stage, 12id(varname) [vname(prefix) logit graph(varname) alll

define level 2 identifier

define variable name for estimates in the data set

calculate logistic model

plot level 1 coefficients over level 2 variable

store coefficients for all variables in the model

the mlt2stage ado - an example

```
. mlt2stage gr_incdiff respincperc age sex, l2id(Country) graph(socspend) command:regress graph:socspend
Two stage calculated for the dependent variable gr_incdiff and the main explanatory variable respincperc with the independent variables respincperc age sex
```

Level 2 variable is Country

Country	1	mean(coef_g~c)
Australia	1	0787574
Canada	-	1056875
Chile	-	0109568
Czech Republic	-	0546495
Denmark	-	0809449
Finland	-	0801003
France	-	0712633
Hungary	-	0470008
Ireland	-	0365443
Israel	-	0550879
Japan	-	0374054
Republic of Korea	- 1	024505
Latvia	-	0239054
Netherlands	-	1280941
New Zealand	I	105004

29/36

Introduction

the mlt2stage ado - an example

Notes: Data from the ISSP - output of the mlt2stage graph option.

Figure: Distribution of country coefficients over social spending

Introduction

the mlt2stage ado - an example

Notes: Data from the ISSP - output of the mlt2stage graph option.

Figure: Distribution of country coefficients over social spending

Introduction

the mlt2stage ado - an example

Notes: Data from the ISSP - output of the mlt2stage graph option.

Figure: Distribution of country coefficients over social spending

- Introduction
- 2 A research example from ASR
- 3 mltcooksd
- 4 mlt2stage
- Outlook

mltl2scatter, mlt2stage, mltcooksd, mltshowm,
mltcooksd, mltrsq ...

- Extension of ados for three or more levels
- Ado to compare multi level and country FE results
- Ado to calculate model fit values for logistic multi level models

mltcooksd

mltcooksd

- → moehring@wiso.uni-koeln.de, www.katjamoehring.de
- → alexander.schmidt@wiso.uni-koeln.de, www.alexanderwschmidt.de

References

Introduction

Achen, Christopher H. (2005): Two-Step Hierarchical Estimation: Beyond Regression Analysis, in: Political Analysis 13(4): 447-456, doi:10.1093/pan/mpi033.

Belsley, David A., Edwin Kuh, and Roy E. Welsch. (1980): Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley.

Gelman, Andrew (2005): Two-Stage Regression and Multilevel Modeling: A Commentary, in: Political Analysis 13(4): 459-461, doi: 10.1093/pan/mpi032.

Ruiter, Stijn and Nan Dirk De Graaf (2006): National Context, Religiosity, and Volunteering: Results from 53 Countries. American Sociological Review 71, pp. 191210.

Snijders, Tom A. B. and Johannes Berkhof (2008): Diagnostic Checks for Multilevel Models, pp. 457514 in Handbook of Multilevel Analysis, edited by J. De Leeuw and E. Meijer. New York: Springer.

Van der Meer, Tom, Manfred Te Grotenhuis and Ben Pelzer (2010): Influential Cases in Multilevel Modeling: A Methodological Comment. American Sociological Review 75: pp. 173-178.